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BACKGROUND:Multiple epidemiological studies exist for some of the well-studied health endpoints associated with inorganic arsenic (iAs) exposure;
however, results are usually expressed in terms of different exposure/dose metrics. Physiologically based pharmacokinetic (PBPK) models may be
used to obtain a common exposure metric for application in dose–response meta-analysis.
OBJECTIVE: A previously published PBPK model for inorganic arsenic (iAs) was evaluated using data sets for arsenic-exposed populations from
Bangladesh and the United States.
METHODS: The first data set was provided by the Health Effects of Arsenic Longitudinal Study cohort in Bangladesh. The second data set was pro-
vided by a study conducted in Churchill County, Nevada, USA. The PBPK model consisted of submodels describing the absorption, distribution, me-
tabolism and excretion (ADME) of iAs and its metabolites monomethylarsenic (MMA) and dimethylarsenic (DMA) acids. The model was used to
estimate total arsenic levels in urine in response to oral ingestion of iAs. To compare predictions of the PBPK model against observations, urinary ar-
senic concentration and creatinine-adjusted urinary arsenic concentration were simulated. As part of the evaluation, both water and dietary intakes of
arsenic were estimated and used to generate the associated urine concentrations of the chemical in exposed populations.

RESULTS: When arsenic intake from water alone was considered, the results of the PBPK model underpredicted urinary arsenic concentrations for
individuals with low levels of arsenic in drinking water and slightly overpredicted urinary arsenic concentrations in individuals with higher levels of
arsenic in drinking water. When population-specific estimates of dietary intakes of iAs were included in exposures, the predictive value of the PBPK
model was markedly improved, particularly at lower levels of arsenic intake.

CONCLUSIONS: Evaluations of this PBPK model illustrate its adequacy and usefulness for oral exposure reconstructions in human health risk assess-
ment, particularly in individuals who are exposed to relatively low levels of arsenic in water or food. https://doi.org/10.1289/EHP3096

Introduction
Inorganic arsenic (iAs) is widely distributed throughout the Earth’s
crust (Zhu et al. 2014). Human exposure occurs through ingestion
and inhalation of iAs released by agricultural and industrial activ-
ities or by use of groundwater supplies which contain iAs derived
from soils and sediments (Hughes et al. 2011). Depending on local
conditions, these natural or anthropogenic sources of arsenic may
make different relative contributions of total arsenic exposure. For
example, in the United States where drinking water arsenic levels
are typically quite low, for most individuals the primary route of
environmental exposure to iAs is through consumption of food-
stuffs that contain arsenic (Kurzius-Spencer et al. 2014). However,
in some cases, the major source of iAs exposure worldwide is
through use of water supplies that contain elevated levels of this
metalloid. For these populations, significant exposure occurs
through use of a contaminated water supply for drinking water and

in food processing and preparation (Khan et al. 2010; Xue et al.
2010). Chronic use of arsenic-containing water has been associ-
ated with a range of adverse health effects. Studies in U.S. popu-
lations in which arsenic concentrations in the water supply are
only modestly elevated (<100 lg of arsenic per liter) have found
associations between exposure and increased incidences of cardi-
ovascular disease and mortality (Moon et al. 2013), diabetes
(Gribble et al. 2012; James et al. 2013; Kim et al. 2013), and neu-
rodevelopmental toxicity (Wasserman et al. 2014).

To elucidate dose–response relationships for adverse health
effects of chronic iAs exposure, the magnitude, pattern, and dura-
tion of exposure to iAs must be determined. Many epidemiologi-
cal studies have used iAs concentrations in water supplies and
consumption histories to estimate exposure (Ahsan et al. 2006;
Calderon et al. 2013). However, reconstruction of long-term ex-
posure to iAs from these data can be complicated by temporal
changes in iAs concentrations in water and food supplies and
changes in patterns of water and food consumption (Greschonig
and Irgolic, 1997). Because information on arsenic exposure may
be obtained from different populations with different sources and
different temporal patterns of exposure, a common exposure met-
ric is needed to allow comparisons across studies (NRC 2013).

Urinary arsenic levels are widely used as biomarkers that
reflect primarily recent intake of arsenic (Xue et al. 2010). In con-
trast, some studies used levels of arsenic in nails as a biomarker
that reflects aggregate exposure to arsenic over a longer time
scale (Wade et al. 2015). Although nail or hair arsenic levels do
integrate exposure over a longer timeframe, it is not clear to what
extent they represent aggregate exposure to arsenicals from all
sources, including food, which contains inorganic, methylated,
and other organic arsenicals, and from drinking water in which
iAs is the predominant arsenical (Kile et al. 2007).

PBPK models are computational frameworks that quantita-
tively describe relevant physiological and biochemical processes
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related to ADME of xenobiotics. Rodent PBPK models can be
calibrated or validated against data for chemical levels in tissues
that are generated experimentally. Human PBPK models are usu-
ally calibrated using in vitro data and are usually evaluated using
data from chemicals in blood or excreted in biological media
(e.g., hair, nail, urine, or feces). PBPK models may be used to
reconcile exposure, intake, and excretion metrics using human
biomonitoring data to inform risk assessment (Georgopoulos et al.
2008). For example, a PBPK model can be used to associate ex-
posure levels with biomarkers of body burden commonly reported
in iAs studies, particularly urinary arsenic level (Kenyon et al.
2008). In the current analysis, a published human PBPK model for
iAs oral intake by El-Masri and Kenyon (2008) was evaluated
using data from two diverse populations. Simulations were con-
ducted using the PBPK model to estimate total iAs levels in urine
in comparison with data obtained from two large population stud-
ies in Bangladesh and the United States (Ahsan et al. 2006;
Calderon et al. 2013; Hudgens et al. 2016). In both comparisons,
intake of iAs was examined using data on consumption of iAs-
contaminated water alone or in combination with data on consump-
tion of arsenic in food. Results of the evaluation of the PBPK
model illustrate the model’s utility for exposure reconstruction,
especially when combining arsenic exposures from water and food.

Methods

Epidemiological Studies of Human iAs Urine Levels
Two data sets were used to evaluate the selected PBPK model. The
first data set was provided by the Health Effects of Arsenic
Longitudinal Study (HEALS), a multidisciplinary and large pro-
spective cohort study on the health consequences of chronic use of
iAs-contaminated groundwater as the source of drinking water in
Araihazar, Bangladesh, conducted between October 2000 and May
2002 (Ahsan et al. 2006). Approximately 12,000 men and women
between 18 and 75 y of age participated in the study. The second
data set was provided by a U.S. Environmental Protection Agency
(U.S. EPA) study that investigated the effects of biological and be-
havioral factors on arsenic exposure in Churchill County, Nevada,
USA, between August and September 2002 (Churchill County
study) (Calderon et al. 2013; Hudgens et al. 2016). The Churchill
County study participants were 904 adult residents whose home tap
water supplies contained various concentrations of iAs (Table 1).

Details of urine and water samples processing for both studies
are given in Hudgens et al. (2016) and Ahsan et al. (2006). For
Churchill County participants, urinary arsenic concentrations used
in modeling were the summed concentrations of iAs, MMA, and
DMA in urine. Samples fromChurchill County participantswith the
concentration of an analyte below the LODwere designated as non-
detect samples and concentrations of analyte in nondetect samples
were estimated by imputation. Details of the imputation process
have been reported (Hudgens et al., 2016). For HEALS participants,
total arsenic concentrations in urinewere used formodeling.

PBPKModel Selection and Modification
El-Masri andKenyon (2008) developed the PBPKmodel selected for
evaluation against human data. The model predicts levels of arsenic
and its metabolites in human tissues and urine after oral exposure.
Arsenic intake can include four different arsenic species: arsenate
(AsV), arsenite (AsIII), monomethylarsenic (MMA) and dimethylar-
senic acid (DMA). The model accounts for the fate and transport of
two iAs species (AsIII, AsV) and mono- and dimethylated arsenical
metabolites in humans. The full model, coded in acslX Libero™ soft-
ware (version 3.0.2.1; The AEgis Technologies Group, Inc.) for this
study, is described inEl-Masri andKenyon (2008).

To compare predictions of the PBPK model against observa-
tions, two output variables were simulated: urinary arsenic con-
centration and creatinine-adjusted urinary arsenic concentration.
The latter value is the ratio between urinary arsenic concentration
and amount of excreted urinary creatinine.

To account for variability within and across the study popula-
tions, the followingmodel inputs and outputs were adjusted for each
modeled individual (based on bodyweights) during the simulation:
arsenic intake rate, the volume of the tissue compartments (gastroin-
testinal lumen, skin, brain, etc.), the urinary flow rate, and urinary
creatinine excretion rate based on subject-specific bodyweight.

The arsenic water intake rate was set as the product of the
reported arsenic water concentration and the reported daily water
intake, both of which were provided for each individual in both
datasets, calculated from the equation:

Water As intake=WaterAs concentration ×Water intake (1)

Ingested arsenic was modeled as either AsV, or AsIII. The model
converts 90% of the ingested AsV mass to AsIII. The ingested AsIII

mass is kept as is (El-Masri and Kenyon 2008).

Table 1. Summary of HEALS and Churchill County data sets.

Parameter HEALS Churchill County

Number of observations Total: 11,438
Male: 4,876
Female: 6,562

Total: 904
Male: 368
Female: 536

Age (years) Range:17–75
Median: 36

Range: 45–92
Median: 61

Height (m) Range: 1.30–1.85
Median: 1.54

Range: 1.45–1.95
Median: 1.66

Weight (kg) Range: 24.50–100.00
Median: 46.00

Range: 44.90–165.80
Median: 79.70

Smoking status Non-smokers: 7,405
Past-smokers: 755
Current smokers ≤10 cigarettes=day: 1953
Current smokers >10 cigarettes=day: 1314

Non-smokers: 755
Smokers: 149

As water conc. (lg=L) Range: 0.1–864.0
Median: 61.0

Range: 0.86–1850.00
Median: 61.00

Total daily water consumption (mL) Range: 175.0–10,240.0
Median: 2,850.0

Range: 0.00–25,260.00
Median: 1,893.00

Urinary As conc. (lg=L) Range: 1.0–2,273.0
Median: 87.0

Range: 0.50–856.30
Median: 39.00

Creatinine adjusted urinary As conc. (lg=g) Range: 6.64–5,000.00
Median: 198.40

Range: 2.84–5,186.00
Median: 85.44
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The model assumes default tissue compartment volumes (L)
based on the relative proportions in a 70-kg male. To adjust the
volumes for males and females in the study populations, the
assumption was made that the relative proportions were similar
across populations, but the standard body weight (BW) can differ.
Thus, a variable BWMULT (Body weight divided by 70 kg) was
added to the model to adjust the 70 kg value for the population-
average for either a male or female, depending on the subject
being modeled.

The original PBPK model returns the rate of arsenic excretion
in moles per minute . To convert this value to an arsenic urinary
concentration for comparison with the urinary metric in the data-
sets, the urinary flow rate for ages 20 to 59 y (Hays et al. (2015)
was adjusted using the BWMULT variable to estimate the uri-
nary flow rate (Vurinary in milliliters per hour) for the individual

Vurinary = 0:65 ml=hrð Þ=kg×BW×BWMULT (2)

where average urine flow rate was 0:65ml=kg=h.
Moles of arsenic were converted to mass using the species-

specific molar weight of arsenic. The urinary concentration was
then estimated as

Curinary in lg=L=
RAurine

Vurinary
×molarmass × 106 lg=g (3)

where RAurine is given in mmole=h. To obtain the urinary concen-
tration in units of lg=g creatinine, an empirical equation was used
to estimate each individual’s urinary creatinine excretion (mass of
creatinine or MCR in lmol=kg=d). The empirical equation takes
into account the individual’s sex, body mass index (BMI), and age.

MCR=b0 + b1�sex+ b2�BMI+b3�age+b4�age2 (4)

where b0, b1, b2, b3, and b4 were set at 266.16, −47:71 (women),
−22:33, 0.66, and −0:017; respectively (Forni Ogna et al. 2015)

The urinary creatinine concentration Curinary-cr was calculated
as

Curinary-cr lg=gð Þ= RAurine
mol
min

� �

MCR ðg=dÞ ×Asmolarmass

× 1440min=d× 1e 6 (5)

Estimation of dietary arsenic intake. Because arsenic in urine
can be derived from multiple exposure routes, we also considered
population-specific estimates of dietary intake of arsenic as a com-
plement to arsenic exposure through ingestion of iAs-contaminated
drinking water.

HEALS iAs in food consumption data. A 39-item semiquan-
titative food frequency questionnaire and two 7-d food diaries
undertaken as part of the HEALS study indicated that rice and
vegetables compose as much as 80% of the food consumed by
Bangladeshis (Chen et al. 2004; Khan et al. 2009).

In the current study, the primary dietary sources of arsenic
intake among Bangladeshis were rice and vegetables. Several
studies provided estimates for consumption rates of rice and veg-
etables and levels of the chemical in these food items as reported
in Table 2. Watanabe et al. (2004) evaluated arsenic consumption
from tube wells for 19 male and 19 female individuals from 2 ru-
ral Bangladesh communities using 24-h self-reports and inter-
views (Watanabe et al. 2004). Khan et al. (2009) implemented an
interviewer-administered Food Frequency Questionnaire (FFQ)
to determine age- and gender-specific dietary intake of arsenic. In
their study, information on dietary intake of food and water was
collected from 1,023 individuals, composed of 386 adult males, 397
adult females, and 240 children from 18 villages in Bangladesh

(Khan et al. 2009). Rahman et al. (2009) measured levels of arsenic
in rice grain samples that were collected between December 2003
and March 2004 from 214 households in 25 Bangladeshi villages
(Rahman et al. 2009). Rahman et al. (2011) reported exposure of
adults to iAs from drinking water and rice in two adjacent rural vil-
lages of Bangladesh. Samples were collected from 14 families for
uncooked and cooked rice, drinking water, and cooking water to
determine total arsenic concentrations (Rahman et al. 2011). Khan
et al. (2010) measured arsenic and cadmium in foods from the
agriculture-based community of Matlab, a rural area in Bangladesh.
They sampled both raw and cooked food items from village homes
(households, n=13) and analyzed them to quantify concentrations
of arsenic and cadmium using atomic absorption spectrophotometry
(Khan et al. 2010). Khan et al. (2012) used a Food Frequency
Questionnaire (FFQ) to estimate householders’ dietary intake of
food and water in 60 households from 6 villages located in the
Sirajdikhan upazila of the Munshiganj district in Bangladesh. In this
study, dietary information was collected from 345 householders
including adult males (n=125), adult females (n=139) and chil-
dren (n=81) (Khan et al. 2012).

Based on available data, daily rice consumption for the HEALS
study was set in the PBPK model to 410 g, using average of the
reported values for men and women (Table 2). Rice arsenic concen-
tration was taken as 150 lg=kg consistent with an estimate by Khan
et al. (2012). Therefore, arsenic intake rate by rice consumption was
calculated as product of rice intake rate and arsenic concentration in
rice to be 4:3× 10−2lgmin−1. Daily vegetable consumption was set
to 150 g, and the arsenic level in vegetables was set to 15 lg=kg
(Khan et al. 2012). Therefore, the intake rate of arsenic through veg-
etable consumption was calculated as the product of 15 lg=kg and
0:150 kg=day and is set at 1:56× 10−3lgmin−1.

Churchill County iAs in Food Consumption Data
Two studies reported dietary intake levels of arsenic in the U.S.
population that are given in Table 2. Kurzius-Spencer et al.
(2014) used data from three different population studies, the
National Human Exposure Assessment Survey (NHEXAS), the
Binational Arsenic Exposures Study (BAsES), and the 2003-04
National Health and Nutrition Examination Survey (NHANES),
to model exposure to inorganic and total arsenic among nonsea-
food eaters using subject-specific data. Tao and Bolger (1999)

Table 2. Estimated arsenic dietary intake for Bangladesh and U.S.
populations.

Variable Mean (range) Source

Food consumption
(Bangladesh)
Rice (g=d ) Male: 523a

Female: 300a Watanabe et al. (2004)
Vegetables (g=d) Male: 153.0a

Female: 146.9a Khan et al. (2009)
Arsenic levels in food
(Bangladesh)
Rice (lg=kg)

173a Watanabe et al. (2004)
150 (10–500) Rahman et al. (2009)
153 (74–301) Rahman et al. (2011)

Vegetables (lg=kg)
12.1 (1.3–22.8) Khan et al. (2010)
15 (0–136) Khan et al. (2012)

Arsenic dietary intake rate
(U.S.)
Rate (lg=d) 5.8–8.0b Kurzius-Spencer et al.

(2014)
Rate(lg=min) 0.04 (0.03–0.05) Tao and Bolger (1999)
aRange not available.
bValues are reported for total inorganic arsenic rates.
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estimated levels of iAs in food in a Total Dietary Study (TDS), a
yearly market-basket program designed to monitor the levels of
toxic chemical contaminants (pesticide residues, industrial and ele-
mental contaminants) and essential nutrients in the U.S. food sup-
ply. The analysis using TDS included foods that are collected from
retail stores once a year from each of four geographic areas of the
United States and are analyzed either after preparation/cooking or
as ready-to-eat (Tao and Bolger 1999). Unlike in the HEALS study,
where modeled arsenic dietary intake was broken down by food
items (vegetables and rice), dietary intake of arsenic in Churchill
County was directly set to 6:9 lg=d (average of the reported
5:8 lg=d to 8 lg=d) as reported by Kurzius-Spencer et al. (2014).

Comparing PBPKModel Simulations to Data
A numerical index to evaluate PBPK model simulations in com-
parison with experimental data (PBPK index) was described by
Krishnan et al. (1995). A discrepancy measure between model
simulations and data is calculated as the ratio of the root mean
square of the simulation error to the root mean square of the ex-
perimental values. The root mean square error is the difference
between the individual simulated and experimental values. If sev-
eral data sets were obtained in a single experiment, the resulting
numerical values of discrepancy measures for all the data can be
combined on the basis of a weighting proportional to the number
of data points contained in each data set. A PBPK index is then
calculated when consolidated discrepancy measures obtained from
several experiments (e.g., exposure scenarios, doses, routes, species)
are averaged. The higher the value for PBPK index, the greater the
agreement between model predictions and experimentally derived
data.

Results

Summary Statistics for HEALS and Churchill County
Data Sets
A comparison of the HEALS and Churchill County data sets
(Table 1) found that (1) the sample size for HEALS was larger than
for Churchill County; (2) participants in HEALS were younger,

shorter, and weighed less than Churchill County participants;
(3) most participants in both studies were females and non-
smokers; (4) although reported arsenic levels in water supplies
in Churchill County had a wider range than levels found in the
HEALS study, the median arsenic level in water supplies was
the same for both data sets; (5) HEALS participants drank more
water (based on median consumption rate) than did Churchill
County participants whose water consumption varied more
widely; and (7) urinary arsenic levels (both creatinine-unadjusted
and -adjusted) were higher in HEALS than in Churchill County
study participants.

Figure 1 shows relationship between arsenic water levels
and creatinine-adjusted urinary arsenic concentrations for HEALS
and Churchill County data. For the HEALS data, a moderate
positive correlation was identified between these two variables
(Spearman’s correlation coefficient = 0:69). A similar relation-
ship between this pair of variables was also found for the Churchill
County data set (Spearman’s correlation coefficient = 0:52).

PBPKModel Simulation Results for HEALS Data
The relationship between arsenic exposure from water alone or
from both water and food and urinary arsenic level was examined
for HEALS participants. Figure 2 shows the relationship between
arsenic levels in water and observed or model-predicted creatinine-
adjusted urinary arsenic for both exposure scenarios. Overall, there
was a strong correlation (Spearman’s correlation coefficient = 0:95)
between model-predicted creatinine-adjusted urinary arsenic con-
centration and water arsenic concentration when arsenic intake was
derived only from water. However, for this exposure scenario, the
model underestimated urinary arsenic levels at lower levels of ar-
senic in water and slightly overestimated urinary arsenic concentra-
tion at higher levels of arsenic in water. Underestimation of urinary
arsenic levels at low levels of arsenic in water might reflect exis-
tence of other sources of arsenic intake. To evaluate the contribution
of food arsenic to exposure, a simulation was performed that
included arsenic intake from water calculated from arsenic concen-
tration and water intake data along with population-specific arsenic
intake from food. With the inclusion of food arsenic intake, better

Figure 1. Relationship between arsenic water concentrations and reported creatinine-adjusted total urinary arsenic concentrations from the HEALS (Panel A)
and Churchill County data (Panel B).
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agreement was found between observed and model-predicted uri-
nary arsenic levels, particularly for lower arsenic water concentra-
tions. In this situation, the PBPK index increased from 0.87 for the
model that used only water arsenic levels to 0.96 for the model that
used both water and food estimates. Although inclusion of arsenic
intake from food improved model fit for lower water arsenic levels,

it did not noticeably improve model fit to observations for partici-
pants who used highly contaminated water supplies (Figure 2).

To further characterize the performance of the PBPK model,
creatinine-adjusted urinary arsenic concentrations were catego-
rized by deciles of arsenic water concentrations (Figure 3). This
presentation of data showed that the PBPK model consistently

Figure 2. Relationship between arsenic water levels and PBPK model-predicted creatinine-adjusted urinary arsenic concentrations for the HEALS data set.
Light and dark dots are measured and predicted total arsenic concentrations in urine; respectively. Panel A: well water as the only arsenic intake source. Panel
B: well water and dietary exposure as the arsenic intake source.

Figure 3. Creatinine-adjusted urinary arsenic concentrations, by decile of arsenic water levels. For each decile, the left box (blue) shows HEALS observed val-
ues, the center box (pink) shows predicted values with water only as a source, and the right box (green) shows predicted values for both water and food as ex-
posure sources. The boxplots are a convenient graphical method to depict all data. The top of each box is the upper quartile (25% of data is greater than this
value), and the bottom end is the lower quartile (25% of data is less than this value). Horizontal line in the middle of each box is the median value. Top and
bottom ends of the whiskers for each box are the maximum value, and minimum values for the data; respectively. Dots for each box depict the outliers where
the top ones are measures for data where values exceed 3/2 times the upper quantile limit, and lower dots are outliers where data is less than 3/2 times of lower
quartile limit.
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underpredicted urinary arsenic concentration at lower arsenic
water levels when water was assumed to be the only source of ar-
senic intake. As shown in Figure 2, including dietary arsenic in
the exposure scenario markedly improved agreement between
observations and model predictions. For the higher deciles of ar-
senic water concentration, model predictions based on intake of
arsenic from water or water and food consistently exceeded
observed levels of arsenic in urine. Notably, for higher expo-
sure scenarios, the boxplots for model predictions were nar-
rower than for observations, suggesting that the PBPK model
did not adequately reflect sources of interindividual variability
that are present in the population.

PBPKModel Simulation Results for Churchill County Data
A similar analytical approach was taken to evaluate PBPK model
performance using Churchill County data. In Figure 4, observed
and model-predicted arsenic levels are shown using exposures
based on intake of arsenic from water and intake from water and
food. When only water arsenic exposure was modeled, observed
and model-predicted urinary arsenic levels were congruent with
a moderate-to-strong Spearman’s correlation coefficient (0.58).
Overlapping observed and model predicted values suggested that,
for either exposure scenario, the PBPK model adequately cap-
tured interindividual variation. Figure 5 shows the results for the
creatinine-adjusted urinary arsenic concentrations when catego-
rized by deciles of arsenic water levels. For the lowest decile, use
of drinking water as the sole source of arsenic led to underestima-
tion of urinary arsenic level, and inclusion of food as an arsenic
source improved agreement between observed values and model
predictions. Notably, inclusion of food as an arsenic source,
improved the PBPK prediction index slightly (from 2.74 to 2.80)
in comparison with the previous HEALS study analysis. Improved
fit with the inclusion of food for the lowest decile of arsenic water
levels is consistent with a recent analysis showing that only among
individuals consuming drinking water containing zero to 1 lg of
arsenic per liter does the mean daily intake of iAs from rice exceed
arsenic intake from water (Mantha et al. 2017).

Discussion
Human exposures to arsenic are linked to a range of sources and
exposure pathways, with individual intakes varying widely by
location, employment, gender, age, and other characteristics that
differ across individuals and populations (Chi et al. 2018; Minatel
et al. 2018; Shakoor et al. 2017). Recognizing this potential varia-
tion, some generalizations can be made regarding the environmen-
tal media and exposure routes most relevant for arsenic. In general,
oral ingestion is the primary route of exposure to environmental
iAs in most populations, typically occurring through dietary intake
of contaminated food or drinking water (Kurzius-Spencer et al.
2014; Wilson 2015).

The Agency for Toxic Substances and Disease Registry
(ATSDR) lists arsenic as the most commonly occurring contami-
nant found at National Priority Listing (NPL) sites found through-
out the United States (ATSDR 2007). Exposure to high levels of
arsenic in drinking water has been documented in several regions of
the world, including India, Bangladesh, China, Taiwan, and South
America (ATSDR 2007; IARC 2012). Arsenic concentrations in
drinking water found in the United States are typically lower than
the high levels found in non-U.S. regions (ATSDR 2007; IARC
2012). Nevertheless, drinking water can still be an important expo-
sure pathway for some U.S. populations, especially those located in
areas near smelting and mining operations and those obtaining
drinking water from high-arsenic geological formations (Ayotte
et al. 2017; Loh et al. 2016). Dietary intake of foods contaminated

with arsenic can also be an important pathway; indeed, for U.S.
residents for whom exposures via drinking water are low, most
arsenic exposure is likely to come via the diet (at relatively low
levels) (Bhattacharya et al. 2012; Halder et al. 2012; Rahman
and Hasegawa 2011; Signes et al. 2008; Sofuoglu et al. 2014;
Zavala and Duxbury 2008). Foods can be contaminated during
production through the accumulation of arsenic from contami-
nated soil or water or by use of arsenic-contaminated water in
food preparations.

Arsenic in ground water used as drinking water and in food
production and preparation is mostly present in the inorganic
form (Pellizzari and Clayton 2006). Under some conditions, ar-
senic in foods can be a significant source of oral exposure to the

Figure 4. Relationship between arsenic water levels and PBPK model-predicted
creatinine-adjusted urinary arsenic concentrations for the Churchill County
data set. Light and dark dots are measured and predicted total arsenic con-
centrations in urine; respectively. Panel A is for well water as the only ar-
senic intake source; Panel B is for well water and food exposures as arsenic
intake sources.
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chemical. For example, analysis of 2003–2010 NHANES data
found that the largest association for adults was between urinary
DMA levels and intake of fish (deCastro et al. 2014). Intake of
seafood (fish and shellfish) in the U.S. population is influenced
by age, gender, and income (Jahns et al. 2014; Tran et al. 2013).
Among the older adult (≥45 years old) population examined in
the Churchill County study (Calderon et al. 2013; Hudgens et al.
2016), 29% reported seafood consumption during 48 h before
urine-sample collection. However, summed urinary concentra-
tions of inorganic, and mono- and dimethylated arsenicals and
seafood intake were not associated in a stepwise selection proce-
dure that identified candidate variables for multivariate statistical
analysis, suggesting that seafood consumption was not a statisti-
cally significant predictor of urinary DMA levels (Hudgens et al.
2016). Thus, consumption of DMA-rich seafood had little, if any,
effect on exposure of participants to this arsenical. The arsenic
burden of some foods, especially seafoods, is present as complex
organic arsenicals (e.g., arsenobetaine, arsenosugars). Although
there is evidence that some complex organic arsenicals can be
metabolized to release dimethylated arsenicals, it is unlikely that
foods rich in this class of arsenicals contribute much to aggregate
exposure to iAs (Thomas and Bradham 2016).

For application of the PBPK model to data from the HEALS
and Churchill County studies, vegetables and rice were identified
as major sources of arsenic exposure. Rice has been identified as a
significant source of exposure to both inorganic and dimethylated
arsenic (Arslan et al. 2017; Wang et al. 2015; Zhao et al. 2013).
Geographic origin affected the relative amounts of iAs and DMA
in rice (Halder et al. 2012; Rahman et al. 2011; Williams et al.
2005). Furthermore, iAs and its methylated metabolites have also
been identified in vegetables. In west Bengal, India, leafy and root
vegetables contained arsenic close to 100% in the iAs form; non-
leafy vegetables contained ∼ 74% of the iAs form (Halder et al.
2013). In raw vegetables, iAs as iAs(V) and iAs(III) accounted for

33 to 100%, MMA for 1 to 11%, and DMA for 3 to 40% of total
arsenic (Biswas et al. 2013). Because concentrations of arsenic in
rice are typically much higher than arsenic concentrations in vege-
tables, rice consumption would be expected to the primary deter-
minant of dietary intake of arsenic. Although the bioavailability of
arsenic for most foodstuffs has not been well characterized (Yager
et al. 2015), there is evidence that the contribution of arsenic in
rice to aggregate arsenic intake may be influenced by differen-
ces in the bioavailability of arsenic species present in this grain.
In the juvenile swine model, oral bioavailability of arsenic in
rice with a high percentage DMA (33%) is much lower than for
high-iAs rice (89%) (Juhasz et al. 2006). For different rice culti-
vars from Bangladesh, estimated oral bioavailability of arsenic
in juvenile swine has been reported to vary from 25% to 94%,
suggesting an important role of rice genotype in bioavailability
(Islam et al. 2017).

The National Research Council (NRC) recommended con-
ducting dose–response meta-analyses for available epidemiologi-
cal studies for iAs. By conducting meta-analyses, studies across
the range of exposure can be pooled together to strengthen confi-
dence (NRC 2013). To this purpose, a common exposure metric
is needed to integrate information across epidemiologic studies to
conduct meta-analyses. Measures of internal doses would be de-
sirable and could be obtained from pharmacokinetic models.
Specifically, the application of a human PBPK model in dose–
response meta-analyses can improve human health risk assess-
ment for iAs. The application of the published iAs human PBPK
model to the data clearly highlighted the need to incorporate food
intake, in addition to water consumption, as a significant source
for iAs at low environmentally relevant exposure situations.
More important, the PBPK model evaluations illustrate its ade-
quacy and usefulness for oral exposure reconstructions in human
health risk assessment using available urine data as a biometric
for total iAs exposure in humans.

Figure 5. Creatinine-adjusted urinary arsenic concentrations, presented by decile of arsenic water levels. For each decile, the left box (blue) shows Churchill
County observed values, the center box (pink) shows predicted values with water only as a source, and the right box (green) shows predicted values for both
water and food as exposure sources. The boxplots are a convenient graphical method to depict all data. The top of each box is the upper quartile (25% of data
is greater than this value), and the bottom end is the lower quartile (25% of data is less than this value). Horizontal line in the middle of each box is the median
value. Top and bottom ends of the whiskers for each box are the maximum value, and minimum values for the data; respectively. Dots for each box depict the
outliers where the top ones are measures for data where values exceed 3/2 times the upper quantile limit, and lower dots are outliers where data is less than 3/2
times of lower quartile limit.
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